Generalizing Cayley Maps

Robert Jajcay Comenius University robert.jajcay@fmph.uniba.sk Sankt-Peterburg, 2014

October 28, 2014

Robert Jajcay Comenius University robert.jajcay@fmph.unit Generalizing Cayley Maps

Definition

An **orientable map** is a 2-cell embedding of a connected graph in an orientable surface.

Definition

An **orientable map** is a 2-cell embedding of a connected graph in an orientable surface.

Platonic solids are also highly symmetric:

Definition

An **orientable map** is a 2-cell embedding of a connected graph in an orientable surface.

Platonic solids are also highly symmetric:

Definition

An orientable map \mathcal{M} is called **regular** if its full (orientation preserving) automorphism group acts transitively on its set of darts.

Definition

An **orientable map** is a 2-cell embedding of a connected graph in an orientable surface.

Platonic solids are also highly symmetric:

Definition

An orientable map \mathcal{M} is called **regular** if its full (orientation preserving) automorphism group acts transitively on its set of darts.

All five Platonic solids are orientably regular maps.

Hence, a map $\ensuremath{\mathcal{M}}$ is regular if and only if

 $|Aut\mathcal{M}| = |D(\mathcal{M})|$

Hence, a map $\ensuremath{\mathcal{M}}$ is regular if and only if

 $|Aut\mathcal{M}| = |D(\mathcal{M})|$

The automorphism group of a regular orientable map acts transitively on the set of darts of the map,

Hence, a map ${\mathcal M}$ is regular if and only if

 $|Aut\mathcal{M}| = |D(\mathcal{M})|$

The automorphism group of a regular orientable map acts transitively on the set of darts of the map, and the stabilizer of any vertex of a regular map is cyclic of order equal to the valency of the map. given any (finite) graph Γ = (V, E), we can replace each edge with a pair of opposing darts, obtain the set darts

- given any (finite) graph $\Gamma = (V, E)$, we can replace each edge with a pair of opposing darts, obtain the set darts
- we can then choose for every vertex v of Γ a cyclic rotation ρ_v of the darts emanating from v

- given any (finite) graph $\Gamma = (V, E)$, we can replace each edge with a pair of opposing darts, obtain the set darts
- we can then choose for every vertex v of Γ a cyclic rotation ρ_v of the darts emanating from v
- the choice of the ρ_v's uniquely determines an embedding of Γ in an orientable surface with ρ_v being the local ordering of the darts emanating from v

- given any (finite) graph $\Gamma = (V, E)$, we can replace each edge with a pair of opposing darts, obtain the set darts
- ▶ we can then choose for every vertex *v* of Γ a cyclic rotation $ρ_v$ of the darts emanating from *v*
- the choice of the ρ_v's uniquely determines an embedding of Γ in an orientable surface with ρ_v being the local ordering of the darts emanating from v
- the resulting map $\mathcal{M} = (\Gamma, \rho)$ may or may not be regular

- given any (finite) graph Γ = (V, E), we can replace each edge with a pair of opposing darts, obtain the set darts
- we can then choose for every vertex v of Γ a cyclic rotation ρ_v of the darts emanating from v
- the choice of the ρ_v's uniquely determines an embedding of Γ in an orientable surface with ρ_v being the local ordering of the darts emanating from v
- the resulting map $\mathcal{M} = (\Gamma, \rho)$ may or may not be regular

But we will not take this rout.

If λ denotes the arc-reversing permutation of the dart set mapping a dart e to its opposite dart e⁻¹ and ρ is the permutation of the dart set defined as the union of the cycles ρ_v, then the monodromy group of M is the group ⟨λ, ρ⟩ If λ denotes the arc-reversing permutation of the dart set mapping a dart e to its opposite dart e⁻¹ and ρ is the permutation of the dart set defined as the union of the cycles ρ_v, then the monodromy group of M is the group ⟨λ, ρ⟩

Theorem

$$|\langle \lambda, \rho \rangle| \ge |D(\mathcal{M})|$$

The map $\mathcal{M} = (\Gamma, \rho)$ is regular if and only if $|\langle \lambda, \rho \rangle| = |D(\mathcal{M}|.$

map automorphisms are graph automorphisms of the underlying graph

- map automorphisms are graph automorphisms of the underlying graph
- if one wants to get a regular map by embedding a graph Γ , Γ has to have a (special) arc-transitive automorphism group $G \leq Aut(\Gamma)$

- map automorphisms are graph automorphisms of the underlying graph
- if one wants to get a regular map by embedding a graph Γ , Γ has to have a (special) arc-transitive automorphism group $G \leq Aut(\Gamma)$
- the local permutations ρ_v need to be selected so that all the automorphisms in G lift, i.e., become map automorphisms, i.e., commute with ρ

Characterization of Graphs That Admit Regular Embeddings

Theorem (Surowski; Gardiner, Nedela, Širáň, Škoviera)

A connected graph Γ of valency greater than or equal to 3 admits an embedding as an orientably-regular map (on some closed orientable surface) if and only if its automorphism group contains a subgroup G acting transitively on $D(\Gamma)$ and such that the stabilizer G_v of every vertex is cyclic.

Characterization of Graphs That Admit Regular Embeddings

Theorem (Surowski; Gardiner, Nedela, Širáň, Škoviera)

A connected graph Γ of valency greater than or equal to 3 admits an embedding as an orientably-regular map (on some closed orientable surface) if and only if its automorphism group contains a subgroup G acting transitively on $D(\Gamma)$ and such that the stabilizer G_v of every vertex is cyclic.

Characterization of Graphs That Admit Regular Embeddings

Theorem (Surowski; Gardiner, Nedela, Širáň, Škoviera)

A connected graph Γ of valency greater than or equal to 3 admits an embedding as an orientably-regular map (on some closed orientable surface) if and only if its automorphism group contains a subgroup G acting transitively on $D(\Gamma)$ and such that the stabilizer G_v of every vertex is cyclic.

Proof: Let G act transitively on $D(\Gamma)$ so that the stabilizer G_v of every vertex is cyclic.

• fix a vertex $u \in V(\Gamma)$, pick a generator γ of G_u

A connected graph Γ of valency greater than or equal to 3 admits an embedding as an orientably-regular map (on some closed orientable surface) if and only if its automorphism group contains a subgroup G acting transitively on $D(\Gamma)$ and such that the stabilizer G_v of every vertex is cyclic.

- fix a vertex $u \in V(\Gamma)$, pick a generator γ of G_u
- ▶ for each $v \in V(\Gamma)$ pick an automorphism μ_v mapping u to v

A connected graph Γ of valency greater than or equal to 3 admits an embedding as an orientably-regular map (on some closed orientable surface) if and only if its automorphism group contains a subgroup G acting transitively on $D(\Gamma)$ and such that the stabilizer G_v of every vertex is cyclic.

- fix a vertex $u \in V(\Gamma)$, pick a generator γ of G_u
- for each $v \in V(\Gamma)$ pick an automorphism μ_v mapping u to v
- let $\rho_v(e) = \mu_v \gamma \mu_v^{-1}(e)$, for all darts *e* emanating from *v*

A connected graph Γ of valency greater than or equal to 3 admits an embedding as an orientably-regular map (on some closed orientable surface) if and only if its automorphism group contains a subgroup G acting transitively on $D(\Gamma)$ and such that the stabilizer G_v of every vertex is cyclic.

- fix a vertex $u \in V(\Gamma)$, pick a generator γ of G_u
- ► for each $v \in V(\Gamma)$ pick an automorphism μ_v mapping u to v
- let $\rho_v(e) = \mu_v \gamma \mu_v^{-1}(e)$, for all darts *e* emanating from *v*
- each automorphism $\varphi \in G$ lifts to an automorphism of (Γ, ρ)

A connected graph Γ of valency greater than or equal to 3 admits an embedding as an orientably-regular map (on some closed orientable surface) if and only if its automorphism group contains a subgroup G acting transitively on $D(\Gamma)$ and such that the stabilizer G_v of every vertex is cyclic.

- fix a vertex $u \in V(\Gamma)$, pick a generator γ of G_u
- ► for each $v \in V(\Gamma)$ pick an automorphism μ_v mapping u to v
- let $\rho_v(e) = \mu_v \gamma \mu_v^{-1}(e)$, for all darts *e* emanating from *v*
- each automorphism $\varphi \in G$ lifts to an automorphism of (Γ, ρ)
- \blacktriangleright the embedding is independent of the choice of the $\mu_{\rm v}{\,}'{\rm s}$

Corollary

If a graph Γ is vertex-transitive and $\varphi \in Aut(\Gamma)$ fixes at least one vertex of Γ , there exists an embedding $\mathcal{M} = (\Gamma, \rho)$ such that φ lifts into $Aut(\mathcal{M})$.

If one wants to start from a graph, which will then be embedded as a regular map, then one **has** to start from an arc-transitive graph with an automorphism group G described in the Surowski; Gardiner, Nedela, Širáň, Škoviera Theorem.

If one wants to start from a graph, which will then be embedded as a regular map, then one **has** to start from an arc-transitive graph with an automorphism group G described in the Surowski; Gardiner, Nedela, Širáň, Škoviera Theorem.

But we will not take this rout.

Robert Jajcay Comenius University robert.jajcay@fmph.unit Generalizing Cayley Maps

if one starts from a Cayley graph C(G, X), chooses a cyclic permutation p of the generating set X, and defines ρ by the rule ρ(g, x) = (g, p(x)), all the automorphisms of the C(G, X) coming from the left multiplication by the elements of G lift to automorphisms of the map

- if one starts from a Cayley graph C(G, X), chooses a cyclic permutation p of the generating set X, and defines ρ by the rule ρ(g, x) = (g, p(x)), all the automorphisms of the C(G, X) coming from the left multiplication by the elements of G lift to automorphisms of the map
- i.e., if one starts from a Cayley graph C(G, X) and chooses a cyclic permutation p of the generating set X, one ends up with an orientable map that admits at least an automorphism group acting regularly on the vertices of the map

- if one starts from a Cayley graph C(G, X), chooses a cyclic permutation p of the generating set X, and defines ρ by the rule ρ(g, x) = (g, p(x)), all the automorphisms of the C(G, X) coming from the left multiplication by the elements of G lift to automorphisms of the map
- i.e., if one starts from a Cayley graph C(G, X) and chooses a cyclic permutation p of the generating set X, one ends up with an orientable map that admits at least an automorphism group acting regularly on the vertices of the map
- if, in addition, if there exists a group automorphism φ of G that preserves X and acts cyclically on X, then choosing ρ(g, x) = (g, φ(x)) gives rise to a regular map

In 1990's, Širáň and Škoviera (1990's) generalized Biggs' result by observing that the orbit of the φ has to satisfy the identity $p(x^{-1}) = p(x)^{-1}$, named such maps balanced Cayley maps, and proved:

In 1990's, Širáň and Škoviera (1990's) generalized Biggs' result by observing that the orbit of the φ has to satisfy the identity $p(x^{-1}) = p(x)^{-1}$, named such maps balanced Cayley maps, and proved:

Theorem (Škoviera, Širáň)

Let $\mathcal{M} = CM(G, X, p)$ be a balanced Cayley map. Then \mathcal{M} is regular iff there exists a group automorphism φ of G satisfying the property $\varphi(x) = p(x)$ for all $x \in X$.

In 1990's, Širáň and Škoviera (1990's) generalized Biggs' result by observing that the orbit of the φ has to satisfy the identity $p(x^{-1}) = p(x)^{-1}$, named such maps balanced Cayley maps, and proved:

Theorem (Škoviera, Širáň)

Let $\mathcal{M} = CM(G, X, p)$ be a balanced Cayley map. Then \mathcal{M} is regular iff there exists a group automorphism φ of G satisfying the property $\varphi(x) = p(x)$ for all $x \in X$.

For example, all regular embeddings of the complete graphs K_n turn out to be balanced Cayley maps (James, Jones, 1985).

In 1990's, Širáň and Škoviera (1990's) generalized Biggs' result by observing that the orbit of the φ has to satisfy the identity $p(x^{-1}) = p(x)^{-1}$, named such maps balanced Cayley maps, and proved:

Theorem (Škoviera, Širáň)

Let $\mathcal{M} = CM(G, X, p)$ be a balanced Cayley map. Then \mathcal{M} is regular iff there exists a group automorphism φ of G satisfying the property $\varphi(x) = p(x)$ for all $x \in X$.

For example, all regular embeddings of the complete graphs K_n turn out to be balanced Cayley maps (James, Jones, 1985).

Four of the five (regular) Platonic solids are Cayley maps, three are balanced.

$|Aut(CM(G,X,p))| \leq |G| \cdot |X|$ and

CM(G, X, p) is regular iff $|Aut(CM(G, X, p))| = |G| \cdot |X|$

$|Aut(CM(G,X,p))| \leq |G| \cdot |X|$

and

CM(G, X, p) is regular iff $|Aut(CM(G, X, p))| = |G| \cdot |X|$ Since G_L is always $\leq Aut(CM(G, X, p))$,

$|Aut(CM(G, X, p))| \leq |G| \cdot |X|$

and

CM(G, X, p) is regular iff $|Aut(CM(G, X, p))| = |G| \cdot |X|$ Since G_l is always $\leq Aut(CM(G, X, p))$,

$$CM(G, X, p) \text{ is regular}$$
iff
there exists a $\varphi \in Aut(CM(G, X, p))$ such that
 $\varphi(1_G) = 1_G$ and $\varphi((1_G, x)) = (1_G, p(x))$

Definition (RJ,Širáň)

A *skew-morphism* of a group G is a permutation φ of G preserving the identity and satisfying the property

$$arphi(\mathsf{g}\mathsf{h})=arphi(\mathsf{g})arphi^{\pi(\mathsf{g})}(\mathsf{h})$$

for all $g, h \in G$ and a function $\pi : G \to \mathbb{Z}_{|\varphi|}$, called the *power* function of G.

Definition (RJ,Širáň)

A *skew-morphism* of a group G is a permutation φ of G preserving the identity and satisfying the property

$$arphi(\mathsf{g}\mathsf{h})=arphi(\mathsf{g})arphi^{\pi(\mathsf{g})}(\mathsf{h})$$

for all $g, h \in G$ and a function $\pi : G \to \mathbb{Z}_{|\varphi|}$, called the *power* function of G.

Theorem (RJ,Širáň)

Let $\mathcal{M} = CM(G, X, p)$ be any Cayley map. Then \mathcal{M} is regular iff there exists a skew-morphism φ of G satisfying the property $\varphi(x) = p(x)$ for all $x \in X$.

 a random decision: let's stick with the underlying graphs being Cayley

- a random decision: let's stick with the underlying graphs being Cayley
- (the underlying graph of the dodecahedron is not Cayley)

- a random decision: let's stick with the underlying graphs being Cayley
- (the underlying graph of the dodecahedron is not Cayley)
- the value of the following limit is unknown

$$\overline{\lim}_{n \to \infty} \frac{\text{number of Cayley graphs of order } \leq n}{\text{number of vertex-transitive graphs of order } \leq n} = ?$$

- a random decision: let's stick with the underlying graphs being Cayley
- (the underlying graph of the dodecahedron is not Cayley)
- the value of the following limit is unknown

 $\overline{\lim}_{n \to \infty} \frac{\text{number of Cayley graphs of order } \leq n}{\text{number of vertex-transitive graphs of order } \leq n} = ?$

(some people believe it might be equal to 1)

Theorem (Richter, Širáň, RJ, Tucker, Watkins) An embedding \mathcal{M} of a Cayley graph C(G, X) admits lifting each of the left-regular multiplications by the elements of G into automorphisms of \mathcal{M} if and only if \mathcal{M} is a Cayley map, i.e., the local rotation at each vertex is the same. Theorem (Richter, Širáň, RJ, Tucker, Watkins) An embedding \mathcal{M} of a Cayley graph C(G, X) admits lifting each of the left-regular multiplications by the elements of G into automorphisms of \mathcal{M} if and only if \mathcal{M} is a Cayley map, i.e., the local rotation at each vertex is the same.

As a *consequence*, if we move away from Cayley maps, there will be some left-multiplication automorphisms of the underlying graph that will not lift, and the map might not end up being vertex-transitive.

Theorem

Let H be a subgroup of a finite group G. Then the group of graph automorphisms induced by left multiplications via the elements of H lifts into a group of automorphisms of a map $\mathcal{M} = (C(G, X), \rho)$ if and only if ρ is constant on the right cosets of H in G,

Theorem

Let H be a subgroup of a finite group G. Then the group of graph automorphisms induced by left multiplications via the elements of H lifts into a group of automorphisms of a map $\mathcal{M} = (C(G, X), \rho)$ if and only if ρ is constant on the right cosets of H in G,

i.e., if and only if Hg = Hf implies $\rho_g = \rho_f$, for all $g, f \in G$.

Theorem

Let H be a subgroup of a finite group G. Then the group of graph automorphisms induced by left multiplications via the elements of H lifts into a group of automorphisms of a map $\mathcal{M} = (C(G, X), \rho)$ if and only if ρ is constant on the right cosets of H in G,

i.e., if and only if Hg = Hf implies $\rho_g = \rho_f$, for all $g, f \in G$.

The (vertex) orbits of the group of automorphisms obtained by lifting left multiplications by the elements of H are the right cosets of H in G.

Lifting automorphisms that fix a vertex

Theorem

Let φ be a graph automorphism of a Cayley graph C(G, X) that fixes the identity, $\varphi(1_G) = 1_G$. Then φ lifts into a map automorphism of a map $\mathcal{M} = (G, X, \rho)$ if and only if

$$\varphi(g)^{-1}\varphi(g\rho_g(x)) = \rho_{\varphi(g)}(\varphi(g)^{-1}\varphi(gx)),$$

for all $g \in G$ and $x \in X$.

Lifting automorphisms that fix a vertex

Theorem

Let φ be a graph automorphism of a Cayley graph C(G, X) that fixes the identity, $\varphi(1_G) = 1_G$. Then φ lifts into a map automorphism of a map $\mathcal{M} = (G, X, \rho)$ if and only if

$$\varphi(g)^{-1}\varphi(g\rho_g(x)) = \rho_{\varphi(g)}(\varphi(g)^{-1}\varphi(gx)),$$

for all $g \in G$ and $x \in X$.

Skew-morphisms lift if and only if ρ is constant on G.

Then $\mathcal{M} = (G, X, \rho)$ is regular if and only if

Then $\mathcal{M} = (G, X, \rho)$ is regular if and only if

there exists a graph automorphism φ fixing 1_G, satisfying the identity from the previous slide, and being equal to ρ_{1_G} on X

Then $\mathcal{M} = (G, X, \rho)$ is regular if and only if

- there exists a graph automorphism φ fixing 1_G, satisfying the identity from the previous slide, and being equal to ρ_{1_G} on X
- there exist automorphisms mapping 1_G to all the different right cosets of H in G

Then $\mathcal{M} = (G, X, \rho)$ is regular if and only if

- there exists a graph automorphism φ fixing 1_G, satisfying the identity from the previous slide, and being equal to ρ_{1_G} on X
- some kind of analogy to skew-morphisms?

Then $\mathcal{M} = (G, X, \rho)$ is regular if and only if

- there exists a graph automorphism φ fixing 1_G, satisfying the identity from the previous slide, and being equal to ρ_{1_G} on X
- some kind of analogy to skew-morphisms?
- there exist automorphisms mapping 1_G to all the different right cosets of H in G
- special situation occurs when φ has only few orbits on the right cosets of H in G

The proportion of Cayley maps among orientably regular maps

What is the value of the following limit

 $\overline{\lim_{n\to\infty}} \frac{\text{number of regular Cayley maps of order } \leq n}{\text{number of regular embeddings of Cayley graphs } \leq n}$?

The proportion of Cayley maps among orientably regular maps

What is the value of the following limit

 $\overline{\lim_{n\to\infty}} \frac{\text{number of regular Cayley maps of order } \leq n}{\text{number of regular embeddings of Cayley graphs } \leq n}$?

What is the value of the following limit

 $\frac{1}{\lim_{n\to\infty} \frac{\text{number of regular Cayley maps of order} \leq n}{\text{number of orientably regular maps of order} \leq n}$?

The proportion of Cayley maps among orientably regular maps

What is the value of the following limit

 $\overline{\lim_{n\to\infty}} \frac{\text{number of regular Cayley maps of order } \leq n}{\text{number of regular embeddings of Cayley graphs } \leq n}$?

What is the value of the following limit

 $\overline{\lim}_{n \to \infty} \frac{\text{number of regular Cayley maps of order } \leq n}{\text{number of orientably regular maps of order } \leq n} ?$

 (if almost all vertex-transitive graphs are Cayley, then maybe almost all orientably regular maps are also Cayley)

Спасибо!

